

Marzouq Alenezi, Saood Alenezi, Husain Alshammari, Saoud Alenezi, Naser Alowaihan

Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ

Abstract

The current project discusses the design for a BiOM Test Fixture. A BiOM is a fully computerized ankle-foot. system, which imitates a human's lower limb, propelling the user forward with each step, developed by Hugh Herr, a survivor of lower limb amputation at MIT Media Lab's Biotronic research group. As part of the project the team was required to design a test fixture to test the BiOM before human use. A test fixture is a device that is able to assess the software and physical aspects of different devices. As per analysis, a strong firm frame was required to withstand all the forces acting on the frame.

Project Goal

"To design an automated, programmable test fixture for the robotic prosthetic lower limb." A single actuator, pneumatic design was assigned for reference but the team was requested to design with either a hydraulic or electric motor.

What is a Test Fixture ?

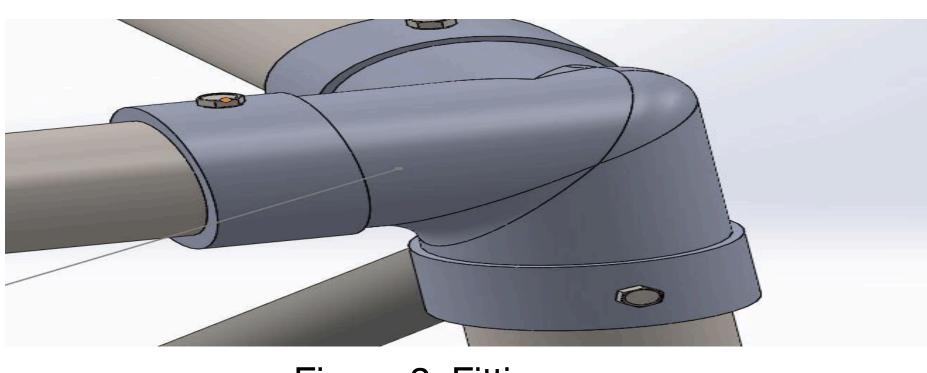
A Test Fixture is a device that is used to run tests on any other device (Testing Electronics, Software's and Physical Devices)

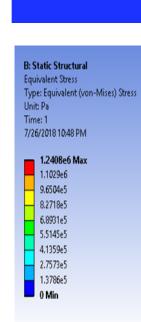
Design Constraints

<u>Engineering</u> Requirements	Specifications	<u>Testing</u> Procedure	
Size	(80x40x35 cm)	Tape Measure	
Time needed for testing	15-25 minutes	Stop Watch	
Types of planes for testing	$0\Box$, level ground testing	Protractor/Angle caliper	
weight	<= 15Kg, 33lbs	Newton Meter/Electronic scale	
Material	Carbon Fiber, Titanium and Aluminum Withstand force of 200 Kg	Hardness and Beam Deflection test in lab	
Hydraulic system	90 psi	Pressure Sensor	
A system able to respond exactly like a particular foot	Up to 2 degrees of freedom	Visually	
Cost	>=500\$	Receipts from purchases	

Table 1: Engineering Requirements

Bolts


Fittings-


Cables -

Pump

Battery

A cubic design was chosen in order to withstand forces from the cylinder and actuator. To help secure the frame, the connectors bolts were drilled through them. A lithium battery was chosen as a power supply.

A: Static Structural Safety Factor Type: Safety Factor Time: 1 7/26/2018 10:52 PM

BiOM Test Fixture

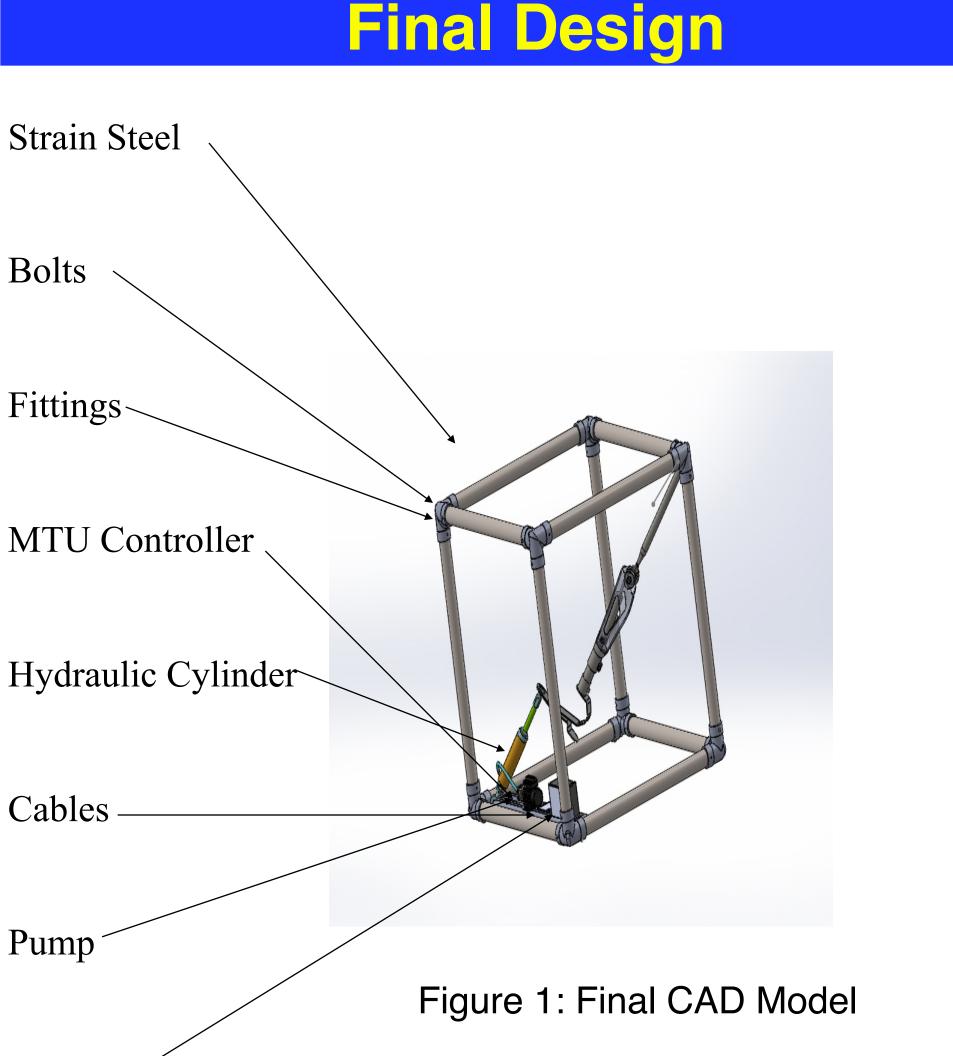
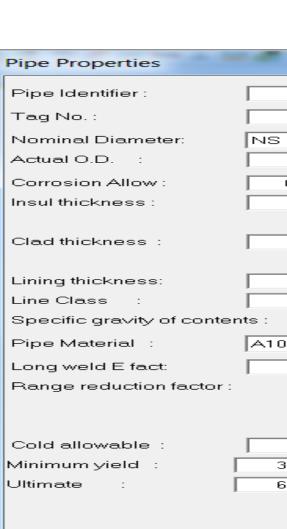
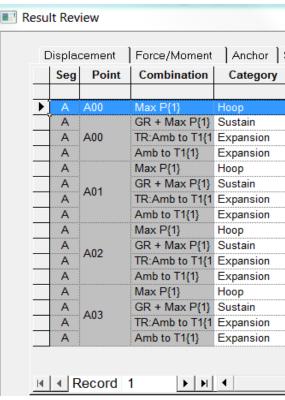
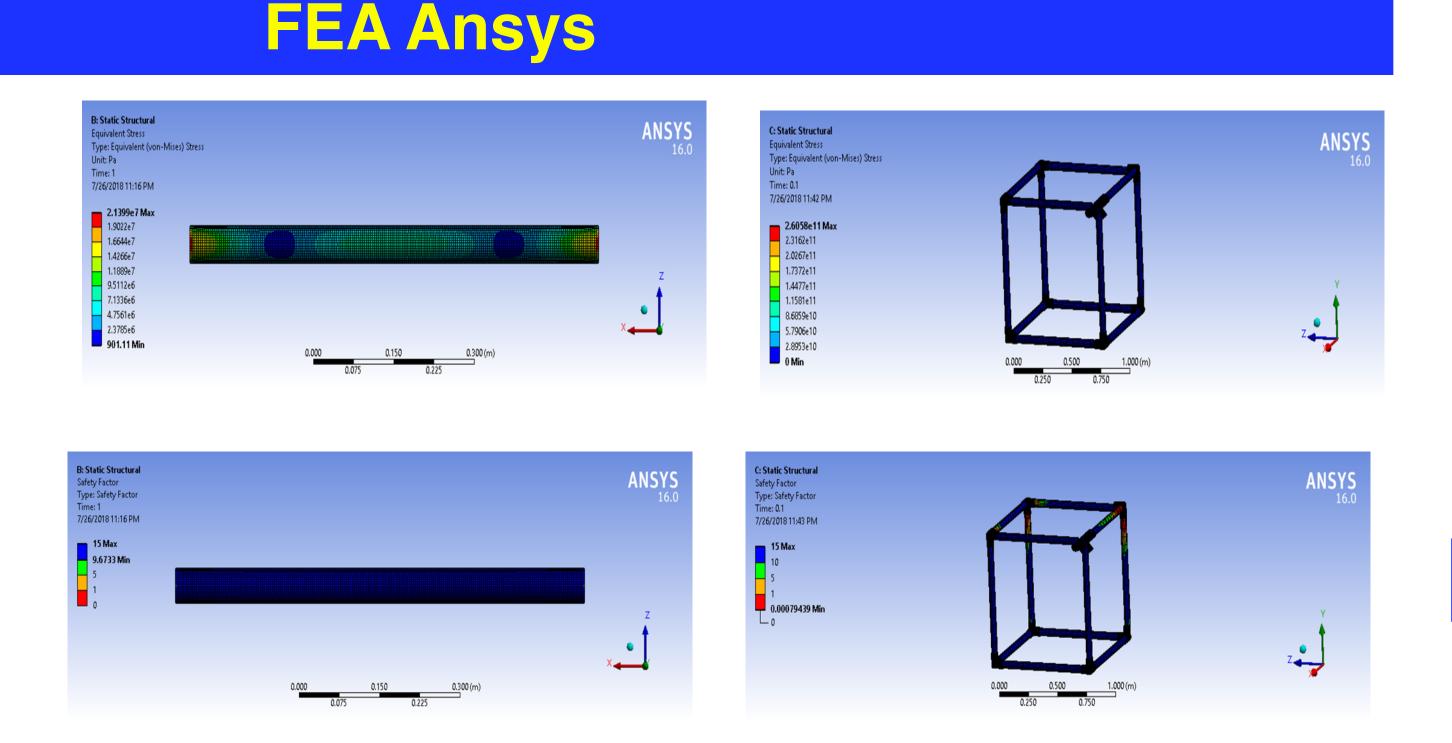


Figure 2: Fittings

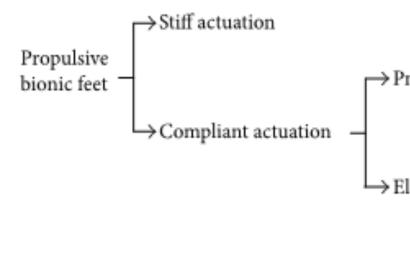




Figure 3: Material that was chose for the Frame

for the BiOM

Seg	-	Combination	Anchor Sup	FY	FZ	FR	1	MX	MY	MZ	MR
Sey	Folin	Combination									
			lbf	lbf	lbf	lbf		t-lb	ft-lb	ft-lb	ft-lb
A	A00	Gravity{1}	203	-203		0	287	0	0	0	
Α	A00	Thermal 1{1}	0	-0		0	0	0	0	0	
Α		GRT1{1}	203	-203		0	287	0	0	0	
Α		Gravity{1}	203	-269		0	337	0	0	421	4
Α	A01 -	Thermal 1{1}	0	-0		0	0	0	0	-0	
Α		GRT1{1}	203	-269		0	337	0	0	421	4
Α		Gravity{1}	292	-180		0	343	0	0	421	4
Α	A01 +	Thermal 1{1}	-47	-47		0	66	0	0	-0	
Α		GRT1{1}	245	-227		0	334	0	0	421	4
Α		Gravity{1}	292	-191		0	349	0	0	196	1
Α	A02 -	Thermal 1{1}	-47	-47		0	66	0	0	198	1
Α		GRT1{1}	245	-238		0	342	0	0	394	3
Α		Gravity{1}	292	-191		0	349	0	0	196	1
Α	A02 +	Thermal 1{1}	-47	-47		0	66	0	0	198	1
Α		GRT1{1}	245	-238		0	342	0	0	394	3
A		Gravity{1}	292	-213		0	362	0	0	-184	1
A	A03	Thermal 1{1}	-47	-47		0	66	0	0	594	E
A		GRT1{1}	245	-260		0	357	0	0	410	4

Fgure 5: The table shows the forces/ moments for the 2" schedule 40 stainless steel pipe used for the BiOM


Auto Pipe Analysis

			? ×	
2''				
	2	'' Stainless Ste	el Pipe	
-	Schedule :		-	
2.3750	Wall thickness :	0.154		
0.000	Mill tolerance :	0.019		
0.00	Insul material :		-	
	Insul density :			
0.00	Clad material :		-	
	Clad density :			
0.00	Lining density :			
	0.001 Suppress low t	emp warnings:		
6-B 🗾	Composition :		-	
1.00	Long weld WL fac:	User 💌	1.00	
1.00				
	Long modulus :	29.400	00	
	Hoop modulus :	29.400	00	
17100.00	Shear modulus :	11.307	77	
5000.00	Density :	489	.0	
0000.00	Poisson's ratio :	0.300	00	
	0	Cance	I Help	

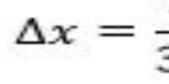

5	upport Code	e Stresses F	requency	/ Mode Sh	ape Genera	al Stress				
	Stress	Allowable	Ratio	Pressure	Bending	Ma (Sus)	Mb (Occ)	Mc (Exp)	SIF	Equation
	psi	psi		psi	psi	ft-lb	ft-lb	ft-lb		
	123	17100	0.01	0	0	0	0	0	0.00	3
	57	17100	0.00	57	0	0	0	0	1.00	15
	0	25650	0.00	0	0	0	0	0	1.00	17
	0	25650	0.00	0	0	0	0	0	1.00	17
	123	17100	0.01	0	0	0	0	0	0.00	3
	9078	17100	0.53	57	9021	421	0	0	1.00	15
	0	25650	0.00	0	0	0	0	0	1.00	17
	0	25650	0.00	0	0	0	0	0	1.00	17
	123	17100	0.01	0	0	0	0	0	0.00	3
	4255	17100	0.25	57	4198	196	0	0	1.00	15
	4235	25650	0.17	0	4235	0	0	198	1.00	17
	4235	25650	0.17	0	4235	0	0	198	1.00	17
	123	17100	0.01	0	0	0	0	0	0.00	3
	3993	17100	0.23	57	3936	184	0	0	1.00	15
	12704	25650	0.50	0	12704	0	0	594	1.00	17
	12704	25650	0.50	0	12704	0	0	594	1.00	17

Figure 4: The table shows the stresses for the 2" schedule 40 stainless steel pipe used

Based on the actuation principle, a primary distinction can be made between ankle foot prosthesis powered with stiff or compliant actuation. The compliant actuators can be divided as either pneumatic or electrical. Depending on the stiffness, the electrical actuation can be further subdivided into four categories – series elastic (SEA), series elastic with parallel spring (SEAPS), variable stiffness (VSAPS) and explosive type (EEA).

The displacement of the flexible Steel is determined by utilizing the mathematical formulae below:

If the electric motor is estimated to operate for 20 minutes, the power required to move the hydraulic fluid from the pump to the pneumatic actuator can be calculated with the following:

power =

work = pressure force × hydraulic displacement

neumatical actuation	→ Pneumatic Artificial Muscles (PAM)
ectrical actuation	→ Series elastic actuation (SEA)
	→ Series elastic actuation (SEAPS) with parallel spring
	→ Variable stiffness actuation (VSA)
	→ Variable stiffness actuation (VSAPS) with parallel spring
	→Explosive elastic actuation (EEA)

Analysis

work time in seconds

Acknowledgments/Sponsors

Project Client: Dr. John Tester Instructor: Sarah Oman